Logo
  • 中文 (台灣)

2020 年 2 月 25 日

  • By  iaadmin
  • 0 comments

Higher-Order Derivatives in Machine Learning in ML

Higher-order derivatives have the ability to capture information about a function that first-order derivatives alone cannot.

First-order derivatives can capture critical information like the rate of change, but they can’t tell the difference between local minima and maxima with the same rate of change.

Lorem ipsum dolor sit amet consectetur adipisicing elit sed do eiusmod tempor incididunt labore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris aliquip commodo consequat.

Several optimization techniques use the usage of higher-order derivatives to overcome this limitation, such as Newton’s approach, which uses second-order derivatives to attain the local minimum of an optimization function.

The second-order derivative is the most commonly employed derivative in machine learning. We already discussed how the second derivative can offer us information that the first derivative alone cannot.

 

It can inform us whether a critical point is a local minimum or maximum (depending on whether the second derivative is higher or smaller than zero), while the first derivative would otherwise be zero in both circumstances.

Tags:
Science

Leave a Comment Cancel Reply

Your email address will not be published.*

近期文章

  • our services-test
  • 網站第一篇文章
  • How Scientific Is Modern Medicine Really?
  • Real challenge for Corona pandemic?
  • The Human rights and democracy programme:

近期留言

  1. 「WordPress 示範留言者」於〈網站第一篇文章〉發佈留言
  2. 「admin」於〈Invalid data markup did cause action〉發佈留言
  3. 「A.R. RONY」於〈Invalid data markup did cause action〉發佈留言

彙整

  • 2023 年 7 月
  • 2023 年 6 月
  • 2020 年 4 月
  • 2020 年 2 月

分類

  • Coronavirus
  • Drawing
  • Education
  • Nicolas
  • Olympiad
  • Science
  • 未分類

Search

Lorem ipsum dolor sit amet con sectetur adipicing elit sed do smod tempor incididunt enim minim veniam.

Nicolas Lawson

Designer

Lorem ipsum dolor sit amet con sectetur adipicing elit sed do smod tempor incididunt enim minim veniam.

Nicolas Lawson

Designer

Lorem ipsum dolor sit amet con sectetur adipicing elit sed do smod tempor incididunt enim minim veniam.

Nicolas Lawson

Designer

Categories

  • Coronavirus (3)
  • Drawing (3)
  • Education (1)
  • Nicolas (4)
  • Olympiad (2)
  • Science (4)
  • 未分類 (3)

Popular Tags

Code Design Landing Page Saas Software